The C-terminal domain of the virulence factor MgtC is a divergent ACT domain.

نویسندگان

  • Yinshan Yang
  • Gilles Labesse
  • Séverine Carrère-Kremer
  • Kevin Esteves
  • Laurent Kremer
  • Martin Cohen-Gonsaud
  • Anne-Béatrice Blanc-Potard
چکیده

MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg(2+) deprivation, but previous work suggested that MgtC is not a Mg(2+) transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg(2+) deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg(2+) concentration, indicating that it does not bind Mg(2+). The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg(2+) uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E

Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...

متن کامل

کاربری پروتیین‌های جدید در ساخت واکسن استافیلوکوکوس اورئوس

Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...

متن کامل

Development of a Novel Anti-Adhesive Vaccine Against Pseudomonas aeruginosa Targeting the C-terminal Disulfide Loop of the Pilin Protein

The type IV pili (T4P) is a major virulence factor of Pseudomonas aeruginosa (P. aeruginosa) that is associated with primary adhesion, biofilm formation and twitching motility. This study focuses on the introduction of a novel biologically active subunit vaccine derived from the disulfide loop (DSL) of P. aeruginosa pilin. We investigated the expression of the novel PilA in-frame with pET26a ve...

متن کامل

Fusion and sequence analysis of the influenza A (H9N2) virus M2e and C-terminal fragment of Mycobacterium tuberculosis HSP70 (H37Rv)

The present study was aimed to construct a fusion plasmid harboring the extracellular domain of the influenza A M2-protein (M2e), which was fused to the N-terminus of the truncated HSP70 (HSP70359–610) molecule as a new approach for future vaccine research against influenza A. The amplified fragments, M2e and HSP70359-610 genes, were gel-purified. The products were then single digested with Bam...

متن کامل

The effect of pH on recombinant C-terminal domain of Botulinum Neurotoxin type E (rBoNT/E-HCC)

Recombinant proteins are tending to be the most favorable vaccine-candidates against botulism. Recombinant Carboxy-terminal of botulinum neurotoxin serotype E (rBoNT/E-HCC) has been introduced as an efficient vaccine against botulism type E. In this report, we made an effort to investigate the effect of different pH on protein structure to assess if rBoNT/E-HCC could be used as a vaccine for or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 22  شماره 

صفحات  -

تاریخ انتشار 2012